Андреас Мюллер, Сара Гвидо - Введение в машинное обучение с помощью Python. Руководство для специалистов по работе с данными [2017, PDF, RUS]

Ответить на тему
 
Автор Сообщение

admin ®

Статус: Не в сети

Стаж: 7 лет 1 месяц

Сообщений: 23734

Репутация: 0 [+] [-]

Откуда: Россия

Создавать темы 30-Июл-2018 04:19 | #1

[Цитировать]

Введение в машинное обучение с помощью Python. Руководство для специалистов по работе с данными
Год издания: 2017
Автор: Андреас Мюллер, Сара Гвидо
Жанр или тематика: Python
Издательство: Самиздат
Язык: Русский
Формат: PDF
Качество: Издательский макет или текст (eBook)
Интерактивное оглавление: Да
Описание: Машинное обучение стало неотъемлемой частью различных коммерческих и исследовательских проектов, однако эта область не является прерогативой больших компаний с мощными аналитическими командами. Даже если вы еще новичок в использовании Python, эта книга познакомит вас с практическими способами построения систем машинного обучения. При всем многообразии
данных, доступных на сегодняшний день, применение машинного обучения ограничивается лишь вашим воображением.Вы изучите этапы, необходимые для создания успешного проекта машинного обучения, используя Python и библиотеку scikit-learn. Авторы Андреас Мюллер и Сара Гвидо сосредоточили свое внимание на практических аспектах применения алгоритмов машинного обучения. Знание библиотек NumPy и matplotlib позволит вам извлечь из этой книги еще больше полезной информации.С помощью этой книги вы изучите:
Фундаментальные понятия и сферы применения машинного обучения
Преимущества и недостатки широко используемых алгоритмов машинного обучения
Способы загрузки данных, обрабатываемых в ходе машинного обучения, включая различные аспекты работы с данными
Продвинутые методы оценивания модели и тонкая настройка параметров
Принципы построения конвейеров для объединения моделей в цепочки и инкапсуляции рабочего потока
Методы работы с текстовыми данными
Рекомендации по улучшению навыков, связанных с машинным обучением и наукой о данныхМашинное обучение стало неотъемлемой частью различных коммерческих и исследовательских проектов, начиная от постановки медицинского диагноза c последующим лечением и заканчивая поиском друзей в социальных сетях. Многие полагают, что машинное обучение могут использовать только крупные компании, обладающие мощными командами аналитиковВ книге «Введение в машинное обучение с помощью Python» описывается как можно самостоятельно и c удивительной легкостью построить модели машинного обучения (Machine Learning, ML). Прочитав эту книгу, вы сможете построить свою собственную систему машинного обучения, которая позволит выяснить настроения пользователей Твиттера или получить прогнозы по поводу глобального потепленияМашинное обучение заключается в извлечении знаний из данных. Это научная область, находящаяся на пересечении статистики, искусственного интеллекта и компьютерных наук и также известная как прогнозная аналитика или статистическое обучение. В последние годы применение методов машинного обучения в повседневной жизни стало обыденным явлениемКнига «Введение в машинное обучение с помощью Python» является вводной и не требует предварительных знаний в области машинного обучения или искусственного интеллектаОбласть применения машинного обучения безгранична и, учитывая все многообразие данных, имеющихся на сегодняшний день, ограничивается лишь вашим воображением

Примеры страниц

Оглавление

ПРЕДИСЛОВИЕ
Кому стоит прочитать эту книгу
Почему мы написали эту книгу
Структура книги
Онлайн-ресурсы
Типографские соглашения
Использование примеров программного кода
БлагодарностиГЛАВА 1. ВВЕДЕНИЕ
Зачем нужно использовать машинное обучение?
Задачи, которые можно решить с помощью машинного обучения
Постановка задач и знакомство с данными
Почему нужно использовать Python?
scikit-learn
Установка scikit-learn
Основные библиотеки и инструменты
Jupyter Notebook
NumPy
SciPy
matplotlib
pandas
mglearn
Сравнение Python 2 и Python 3
Версии библиотек, используемые в этой книге
Первый пример: классификация сортов ириса
Загружаем данные
Метрики эффективности: обучающий и тестовый наборы
Сперва посмотрите на Ваши данные
Построение вашей первой модели: метод k ближайших соседей
Получение прогнозов
Оценка качества модели
Выводы и перспективыГЛАВА 2. МЕТОДЫ МАШИННОГО ОБУЧЕНИЯ С УЧИТЕЛЕМ
Классификация и регрессия
Обобщающая способность, переобучение и недообучение
Взаимосвязь между сложностью модели и размером набора данных
Алгоритмы машинного обучения с учителем 45 Некоторые наборы данных
Метод k ближайших соседей
Линейные модели
Наивные байесовские классификаторы
Деревья решений
Ансамбли деревьев решений
Ядерный метод опорных векторов
Нейронные сети (глубокое обучение)
Оценки неопределенности для классификаторов
Решающая функция
Прогнозирование вероятностей
Неопределенность в мультиклассовой классификации
Выводы и перспективыГЛАВА 3. МЕТОДЫ МАШИННОГО ОБУЧЕНИЯ БЕЗ УЧИТЕЛЯ И ПРЕДВАРИТЕЛЬНАЯ ОБРАБОТКА ДАННЫХ
Типы машинного обучения без учителя
Проблемы машинного обучения без учителя
Предварительная обработка и масштабирование
Различные виды предварительной обработки
Применение преобразований данных
Масштабирование обучающего и тестового наборов одинаковым образом
Влияние предварительной обработки на машинное обучение с учителем
Снижение размерности, выделение признаков и множественное обучение
Анализ главных компонент (PCA)
Факторизация неотрицательных матриц (NMF)
Множественное обучение с помощью алгоритма t-SNE
Кластеризация
Кластеризация k-средних
Агломеративная кластеризация
DBSCAN
Сравнение и оценка качества алгоритмов кластеризации
Выводы по методам кластеризации
Выводы и перспективыГЛАВА 4. ТИПЫ ДАННЫХ И КОНСТРУИРОВАНИЕ ПРИЗНАКОВ
Категориальные переменные
Прямое кодирование (дамми-переменные)
Числа можно закодировать в виде категорий
Биннинг, дискретизация, линейные модели и деревья
Взаимодействия и полиномы
Одномерные нелинейные преобразования
Автоматический отбор признаков
Одномерные статистики
Отбор признаков на основе модели
Итеративный отбор признаков
Применение экспертных знаний
Выводы и перспективыГЛАВА 5. ОЦЕНКА И УЛУЧШЕНИЕ КАЧЕСТВА МОДЕЛИ
Перекрестная проверка
Перекрестная проверка в scikit-learn
Преимущества перекрестной проверки
Стратифицированная k-блочная перекрестная проверка и другие стратегии
Решетчатый поиск
Простой решетчатый поиск
Опасность переобучения параметров и проверочный набор данных
Решетчатный поиск с перекрестной проверкой
Метрики качества модели и их вычисление
Помните о конечной цели
Метрики для бинарной классификации
Метрики для мультиклассовой классификации
Метрики регрессии
Использование метрик оценки для отбора модели
Выводы и перспективыГЛАВА 6. ОБЪЕДИНЕНИЕ АЛГОРИТМОВ В ЦЕПОЧКИ И КОНВЕЙЕРЫ
Отбор параметров с использованием предварительной обработки
Построение конвейеров
Использование конвейера, помещенного в объект GridSearchCV
Общий интерфейс конвейера
Удобный способ построения конвейеров с помощью функции make_pipeline
Работа с атрибутами этапов
Работа с атрибутами конвейера, помещенного в объект GridSearchCV
Находим оптимальные параметры этапов конвейера с помощью решетчатого поиска
Выбор оптимальной модели с помощью решетчатого поиска
Выводы и перспективыГЛАВА 7. РАБОТА С ТЕКСТОВЫМИ ДАННЫМИ
Строковые типы данных
Пример применения: анализ тональности киноотзывов
Представление текстовых данных в виде «мешка слов»
Применение модели «мешка слов» к синтетическому набору данных
Модель «мешка слов» для киноотзывов
Стоп-слова
Масштабирование данных с помощью tf-idf
Исследование коэффициентов модели
Модель «мешка слов» для последовательностей из нескольких слов (n-грамм)
Продвинутая токенизация, стемминг и лемматизация
Моделирование тем и кластеризация документов
Латентное размещение Дирихле
Выводы и перспективыГЛАВА 8. ПОДВЕДЕНИЕ ИТОГОВ
Общий подход к решению задач машинного обучения
Вмешательство человека в работу модели
От прототипа к производству
Тестирование производственных систем
Создание своего собственного класса Estimator
Куда двигаться дальше
- Теория
- Другие фреймворки и пакеты машинного обучения
- Ранжирование, рекомендательные системы и другие виды обучения
- Вероятностное моделирование, теория статистического вывода и вероятностное программирование
- Нейронные сети
- Масштабирование на больших наборах данных
- Оттачивание навыков
Доп. информация: Андреас Мюллер получил ученую степень PhD по машинному обучению в Боннском университете. Занимал должность специалиста
по машинному обучению в Amazon, где занимался разработкой проектов компьютерного зрения. В настоящий момент Андреас работает в Центре изучения данных Нью-Йоркского университета. Кроме того, Андреас – куратор и один из ключевых разработчиков библиотеки scikit-learn.Сара Гвидо – специалист по анализу данных, имеет большой опыт работы в стартапах, совсем недавно стала ведущим специалистом по анализу данных в компании Bitly, постоянный спикер конференций по машинному обучению. Кроме того, Сара имеет степень магистра по информатике Мичиганского университета.https://github.com/amueller/introduction_to_ml_with_python
[Профиль] [ЛС]
Вернуться к началу
Показать сообщения:    
Ответить на тему

Текущее время: 22-Ноя 19:50

Часовой пояс: UTC + 3



Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы можете скачивать файлы